
From Whole Stillage to Steak: Spent Grains for Livestock Feed

Dr. Jeff Lehmkuhler
Extension Beef Cattle Specialist
Department of Animal & Food Sciences
University of Kentucky

Decanter centrifuge

Thin Stillage Still Present

AFTER screwpress or centrifuge = Wet Grains + Thin Stillage

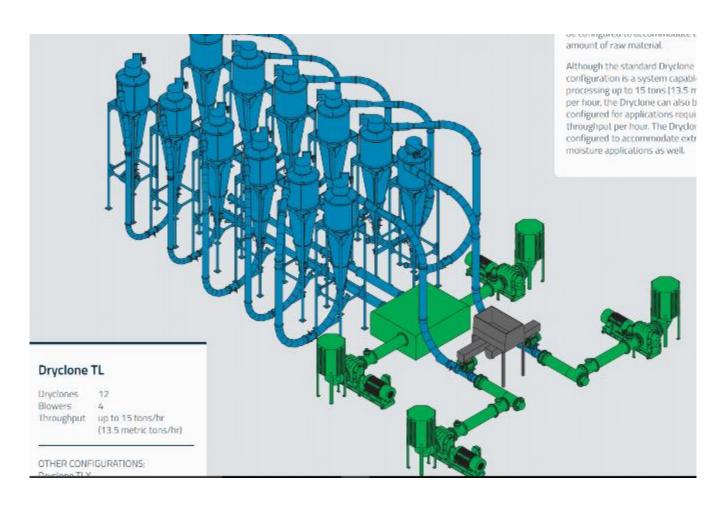
Thin Stillage high BOD

- Evaporate to Condensed Solubles then added to wet grain
 - Drum Dryer for Dried Distillers
- Biodigestor for thin stillage?

Dewatering & Drying Options / Processes

- Screw press
- Centrifuge
- Belt press
- Extruders
- Drum dryers
- Evaporators

- Sonic
- Superheated steam
- Others


Limited energy efficiency data in research

Screw press < Centrifuge

Pulverizing Air Dryer – Recently Seeking DDGS

- Non-thermal drying
- Lower energy
- No heat damage to grains
- Minimum volume?

Throughput? 15-350 T/hr

Selecting a Drying Process

- Initial Cost
- Consider maintenance
- Energy costs / Efficiency
- Throughput
- End moisture level / Product Stream

Analysis of Various Slop Products

Item, %DM	Thin	Settled	Whole	Evaporated
Protein, %	32.5	31.9	29.6	30
Fat, %	15	12.8	9.9	14.4
Fiber, %	5	6.4	7.4	4.4
Ca, %	0.25	0.21	0.25	0.13
P, %	1.25	1.06	0.62	1.13
Total Solids, %	4.0	4.7	8.1	16
Water, %	96	95.3	91.9	84
No. Samples	10	11	5	2

Composition Varies by Grain source

	Wh	Wheat		rley	Co	rn
	Thin Stillage	Distillers Grains	Thin Stillage	Distillers Grains	Thin Stillage	Distillers Grains
Ash	8	4	10	4	7	5
EE	14	4	16	6	9	10
NDF	34	74	32	80	13	45
ADF	4	22	8	31	NA	NA
СР	46	26	37	15	19	30
Starch	2	2	1	1	25	8
NSC	28	7	38	4	NA	29

Stillage = Slop & Feeding Problems Occurred

- 1942 Garrigus & Good state 2 common mistakes when feeding slop
 - 1. Failure to use other feeds to provide a balanced ration
 - 2. Hauling slop too far such that the cost makes it too expensive
- They recommended the following
 - 1. ½ lb / 100 lb body weight of forage / hay
 - 2. 3-6 lbs of grain offered to increase dry matter intake
 - 3. Yellow ear corn for vitamin A & bloat reducing effect of the cob
 - 4. White corn < 3 months
 - 5. Free-choice limestone (2-3 oz/d)
 - 6. Not more than 3-4 gal / 100 lb live weight gave farmers best results

Feeding Slop

Growing Steers Thin Stillage

	0	2	4	6.7
ADG, Ib	3.5	3.3	3.7	3.5
Basal Diet DMI, lb	18.7	16.5	17.2	14.3
Thin Stillage DMI, lb	0	0.9	2.2	3.7
Thin Stillage % DMI	0	5.2	11.3	20.2
Total DMI, lb	18.7	17.4	19.4	18.3
Gain:Feed TDMI	5.3	5	5.3	5

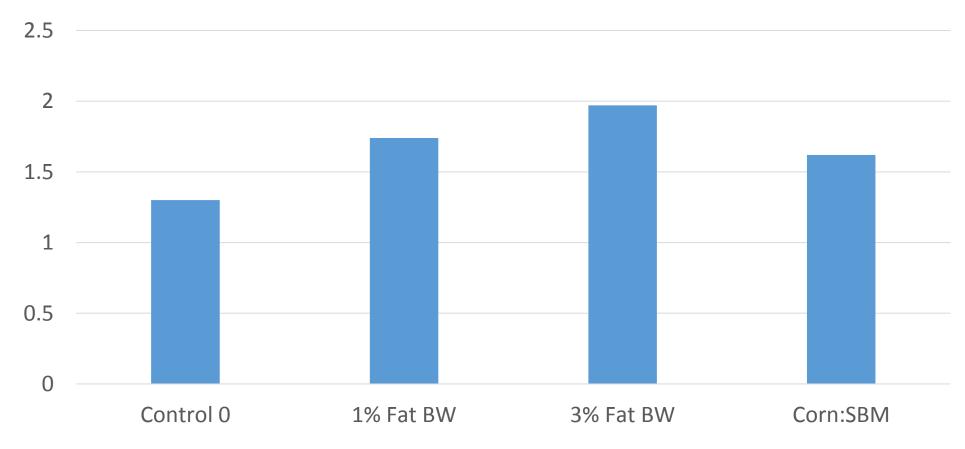
o gai

- DM from Stillage Exchanged w/ Basal Diet
- No Detrimental Impact on Animal Performance

Cattle Performance on Whole Stillage

	Thin Stillage	Water	
Steers grazing crested wheatgrass			
Fluid Intake, gal/d	12.7 ^a	7.6 ^b	
ADG, lb	3.08 ^a	1.98 ^b	
Steers fed growing diets			
Fluid Intake, gal/d	6.3	6.0	
ADG, lb	3.52	3.52	
Gain:Feed (linear effect)	0.3	0.2	
Steers fed finishing diets			
Fluid Intake, gal/d	7.1	7.1	
ADG, lb	3.52	3.08	
Gain:Feed (linear effect)	0.19	0.15	

Composition of Energy ETOH Products


Feed	DM %	CP %	Nem, Mcal/cwt	Neg, Mcal/cwt	Ca %	Р%	S %
CDS	30-50	18-35	100-125	69-89	0.07	1.8	1.6
Wet DGS	30-35	30-35	100	68	0.05	0.8	0.7
Mod DGS	40-50	30-35	100	68	0.05	0.8	0.7
Dry DGS	90	28-32	100	68	0.04	0.8	0.7

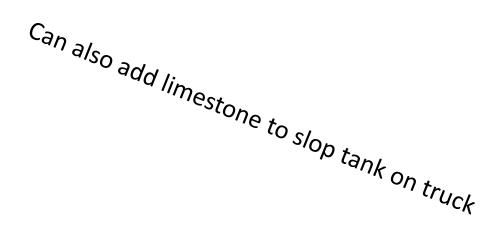
Based on several sources including company literature, National Research Council, and United States-Canadian Tables of Feed Composition.

- Today fat not being extracted from bourbon derived distillers
- Sulphur levels generally lower = lower risk of toxicity from bourbon source

Research Update – Fed Daily Open Troughs

General Considerations

- Fat content can limit feeding rates
 - 3-4% added fat level
 - Ask for feed test (de-oiled or full-fat)
- Moisture levels can potentially limit Dry Matter Intake


• Settling of slop grain particles = Recirculation / Stirring

Acidity concerns

- Slop pH typically ~ 4 = slightly acidic (lactic acid + other VFAs)
- North Carolina research with potato cannery waste (lower pH) = tooth decay, rumen tissue concerns, & lower growth rate
- Longer Slop sits = lower pH potential if residual fermentable substrates
 - POINT Feed it fresh or BUFFER
- Consider feeding a buffer

Buffers

- Common Buffers include:
 - Calcium Carbonate (limestone)
 - Sodium Bicarbonate
- Alkalizer raise pH
 - Magnesium Oxide
- Consider a 3:1 mixture of Bicarbonate:MagOx
- Feed buffer at rate of 0.25-0.5 lb/hd/d immediately at feeding

Growing Steers Fed Whole Stillage

Trial 1 Trial 2

	Urea	Urea/SBM	Urea/WS	Urea	Urea/SBM	Urea/WS
ADG, lb/d	2.8	3.0	3.0	2.8	2.8	2.8
DM Intake, lb/d	17.7	18.7	18.9	20.1	20.4	21.2
F:G	6.3	6.3	6.3	7.1	7.3	7.7

Note: Intake of Whole Stillage was ~ 1% BW as-fed or about 1.2 gallons = ~ 0.8 lbs

Effective SBM replacement

Limiting Stillage to 3% Fat Supplement Level

Lb Whole Stillage as-fed / gallons as-fed

Intake, lb DM/d	Lb Fat Added	3% Added Fat @ 10% Fat	3% Added Fat @ 15% Fat
14	0.42	60 lb / 6.7 gal	40 lb / 4.4 gal
18	0.54	77 / 8.5	51 / 5.7
22	0.66	94 / 10.5	63 / 7
26	0.78	111 / 12.4	74 / 8.3
30	0.90	128 / 14.3	86 / 9.5

Assumes 7% DM in Whole Stillage Assumes 9 lb/gal in Whole Stillage

Dry Distillers Grains with 10% Fat 14 lb DMI / 0.42 lb Fat supplement 4.7 lb As-fed DDGS

~ 10:1 Exchange for Stillage : DDGS

General Feeding Recommendations

Adjust mineral program to high Calcium, no Phos

• Up to 40% of diet DM for low Sulphur product

 Mindful of moisture content of total ration as inclusion rates increase, especially for slop

Consider handling / storage / transportation expenses

NUTRITIONIST'S POINT OF VIEW

HIGH quality protein & energy FEEDSTUFFS

Local advantage for BEEF & ruminant industries

Can be fed to many classes of ruminants

Appropriately balance TOTAL diet & LIMIT amount fed

